A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity.

نویسندگان

  • J Lee
  • D F Klessig
  • T Nürnberger
چکیده

Harpin from the bean halo-blight pathogen Pseudomonas syringae pv phaseolicola (harpin(Psph)) elicits the hypersensitive response and the accumulation of pathogenesis-related gene transcripts in the nonhost plant tobacco. Here, we report the characterization of a nonproteinaceous binding site for harpin(Psph) in tobacco plasma membranes, which is assumed to mediate the activation of plant defense responses in a receptor-like manner. Binding of 125I-harpin(Psph) to tobacco microsomal membranes (dissociation constant = 425 nM) and protoplasts (dissociation constant = 380 nM) was specific, reversible, and saturable. A close correlation was found between the abilities of harpin(Psph) fragments to elicit the transcript accumulation of the pathogenesis-related tobacco gene HIN1 and to compete for binding of 125I-harpin(Psph) to its binding site. Another elicitor of the hypersensitive response and HIN1 induction in tobacco, the Phytophthora megasperma-derived beta-elicitin beta-megaspermin, failed to bind to the putative harpin(Psph) receptor. In contrast to activation by beta-megaspermin, harpin(Psph)-induced activation of the 48-kD salicylic acid-responsive mitogen-activated protein kinase (MAPK) and HIN1 transcript accumulation were independent of extracellular calcium. Moreover, use of the MAPK kinase inhibitor U0126 revealed that MAPK activity was essential for pathogenesis-related gene expression in harpin(Psph)-treated tobacco cells. Thus, a receptor-mediated MAPK-dependent signaling pathway may mediate the activation of plant defense responses induced by harpin(Psph).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction

Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...

متن کامل

A subset of hypersensitive response marker genes, including HSR203J, is the downstream target of a spermine signal transduction pathway in tobacco.

A cellular signal transduction pathway induced by the polyamine, spermine (Spm), and transmitted by mitochondrial dysfunction is proposed in tobacco. In this investigation, we further resolve the pathway by identifying a subset of hypersensitive response (HR) marker genes as downstream components. In a previous report, we identified harpin-induced 1 (HIN1) and two closely related genes as respo...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 13 5  شماره 

صفحات  -

تاریخ انتشار 2001